

Penguin Carpentry: Integrating apps on desktop Linux

Desktop Linux can be a confusing world, with different desktops and
distributions offering their own frameworks for application authors.
This guide explains the pieces you need to make an application that works for
most desktop Linux users.

Much of this also applies to BSD and other open source platforms, but we’ll
refer the ‘Linux desktop’ for convenience.

Contents:

	User Interface options
	Desktop style: GTK or Qt

	Web tech: Electron or browser

	Game style

	Launching your application
	Command line

	Desktop launcher

	File associations

	Icons
	Icon file formats

	File locations

	Notifications

	Storing data
	Cache

	Configuration & application data

	Runtime data

Indices and tables

	Index

	Search Page

User Interface options

Most of Penguin Carpentry is about integrating a desktop application you’ve
already written. But if you’re just getting started, one of the first things
you’ll need to figure out is what to use for the user interface.

As with many things in the open source world, there are many different options.
This is an overview of a few of the main ones.

Desktop style: GTK or Qt

If you want a traditional desktop style application - buttons, menus, toolbars,
and so on, the main options are GTK and Qt. They’re written in C and C++
respectively, so you can make very efficient apps, but they also have bindings
to higher-level languages like Python.

If your app will also run on Windows/Mac, go with Qt; its cross platform support
is stronger than GTK. If you’re writing just for Linux, it’s mostly a matter of
taste. GTK apps look more native in the GNOME desktop, whereas Qt apps fit
better in KDE, but both toolkits work with either desktop.

See also

Qt 5 documentation [https://doc.qt.io/qt-5/]

GTK+ 3 reference manual [https://developer.gnome.org/gtk3/stable/]

Python GTK+ 3 tutorial [http://python-gtk-3-tutorial.readthedocs.io/en/latest/index.html]

Web tech: Electron or browser

Electron is a framework to create desktop applications using HTML and
Javascript. You can easily create attractive, cross platform applications
using familiar web development techniques, and a lot of new applications have
been written with it. But Electron apps tend to use a lot of memory, so there’s
a pushback from some users.

A lightweight alternative for some applications is to run a small web server
on localhost and use a browser to display an HTML interface. It’s hard to
integrate this nicely with the desktop, though, and you need to pay attention to
security so that other websites open in the browser can’t touch it.

See also

Electron home page [https://electronjs.org/]

Game style

Game interfaces tend to be drawn with a different set of tools. High-performance
graphics will use OpenGL or its replacement, Vulkan, but there are many
frameworks and engines built around these to provide more convenient APIs, such
as SDL and pygame.

Note

I don’t know this area well! If you can expand and improve this section,
please contribute.

Launching your application

Command line

Most applications on Linux can be launched from the command line, even if they
don’t show output in the terminal. To allow this, you need an executable file in any
of the directories listed in the PATH environment variable.
These will often end in bin, such as /usr/local/bin.

Executable files

On Unix, an executable file is one with the ‘execute bit’ set in its
permissions. You can make a file executable with this command:

chmod +x path/to/file

The file should be either a compiled ‘binary’, or a text script. Scripts need
to start with a ‘shebang’, a line that identifies the interpreter to run
the script with. For example:

#!/usr/bin/python3

The command is the filename. By convention, it should be lower case. If you
want to use more than one word, separate them with hyphens, e.g.
chromium-browser.

Desktop launcher

To add your application to the desktop launcher or applications menu, you need
a desktop entry file, with a .desktop extension. It contains something like
this:

[Desktop Entry]
Version=1.0
Type=Application

The name will be displayed
Name=Inkscape
Translations are possible: they're used depending on the system locale
Name[hi]=इंकस्केप

See the icon section for how this is looked up.
Icon=inkscape

The command to launch your application. %F is for file paths to open.
Exec=inkscape %F

File types it can open; see file associations.
MimeType=image/svg+xml;...

Your application’s desktop entry is also used for
file association.

There are a number of other optional fields you can use. See the links below
for more information.

These desktop files are placed in an applications subdirectory of each
XDG data directory.
If you have to put it in place yourself, the normal locations
are:

	Per-user: ~/.local/share/applications

	System: /usr/local/share/applications

See also

GNOME developer guide to desktop files [https://developer.gnome.org/integration-guide/stable/desktop-files.html.en]

Desktop Entry Specification [https://specifications.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html]

File associations

To use your application for opening files from the file manager, specify the
details in your desktop file. In the Exec field, make
sure your launch command includes a placeholder like %F:

Exec=inkscape %F

%F may be replaced by one or more file paths. Use lowercase %f if it can
only handle one path per command. %U and %u are similar, but they pass
URLs. Local files have URLs starting file://, but the platform might also
pass HTTP or FTP URLs to your application.

Then use the MimeType field to specify what MIME types it handles:

MimeType=image/svg+xml;image/x-eps;

There may be other applications that support the same MIME type.
It’s normally up to the user to pick the default application for a file type,
but if you have a good reason to change it, you can use a mimeapps.list
file as described in the MIME associations specification.

See also

MIME application associations specification [https://specifications.freedesktop.org/mime-apps-spec/mime-apps-spec-latest.html]

If the file format you want to open isn’t already defined on the system, you’ll
need to define a new MIME type for it.

Define a MIME type

A MIME type is meant to be a unique name for a file format, like image/png
or text/x-makefile. For new MIME types, the recommended format is
application/vnd.org_name.app_name, filling in the
organisation name and app or format name as appropriate (e.g. Libreoffice ODT
files are application/vnd.oasis.opendocument.text). You can add +json
or +xml to the end if your file format is based on one of these generic
data formats.

MIME types are added to the system with XML files like this:

<?xml version="1.0" encoding="UTF-8"?>
<mime-info xmlns="http://www.freedesktop.org/standards/shared-mime-info">
 <mime-type type="application/vnd.acme.frobulate">
 <comment>Frobulate file</comment>
 <glob pattern="*.frobulate"/>
 </mime-type>
</mime-info>

The <glob> tag specifies a file extension for files with this MIME type.
Other fields can distinguish different file types sharing the same extension,
but it’s best to pick a unique extension. There’s no need to limit the extension
to three letters.

The filename of this XML file should start with the vendor name, e.g.
acme-frobulate.xml. Call xdg-mime install acme-frobulate.xml to install
it. This will copy it into a directory such as /usr/local/share/mime/packages,
and rebuild the MIME database from all of these XML source files.

See also

Shared MIME-info database specification [https://specifications.freedesktop.org/shared-mime-info-spec/shared-mime-info-spec-latest.html]

Icons

You probably want to install at least one icon for your application’s
desktop launcher. If you’re defining a file type to be used with your application, you’ll want an icon
for that too.

Icon file formats

Icons on Linux are stored in standard image formats: PNG for bitmap icons,
and SVG for vector icons. You can provide either format, or both.

If you use bitmap icons, you’ll need to provide several files with different
resolutions. The most important one for applications and file types is a
48 × 48 pixel square, and 16, 32 and 64 pixel square shapes are also common.
You can provide any other sizes you like, and you can also make double
resolution icons for high-DPI displays - e.g. a double resolution icon for
a 32 pixel square would have 64 × 64 pixels, and may be visually simpler
than a standard 64 × 64 pixel icon.

If a desktop wants to show an icon at a size for which it doesn’t have a file,
it will scale another size up or down. It may not look perfect, but the icon
is still clearly recognisable.

File locations

Icons are organised under an icons subdirectory of each
XDG data directory. So the default locations are:

	Per-user: ~/.local/share/icons

	System: /usr/local/share/icons

Within each icons directory are a number of theme directories.
The only one you need to care about as an application author is hicolor;
this is used whenever the user’s preferred theme doesn’t have a particular icon.
You can investigate the others if you’re keen enough to make several different
versions of each icon.

Within each theme are directories for different icon sizes in pixels,
e.g. 48x48.
Vector icons have a separate directory called scalable at this level.

Within each size directory are different categories. The two most relevant
for application authors are apps for application icons, and mimetypes
for file types. Finally, these category directories hold the icon files.

So the path of an installed icon file looks something like this:

/usr/share/icons/hicolor/48x48/apps/firefox.png

See also

Icon theme specification

Icon naming specification [https://specifications.freedesktop.org/icon-naming-spec/icon-naming-spec-latest.html]

Notifications

[image: _images/notification-example.png]
Use desktop notifications to tell the user about something happening while your
app is in the background, e.g. a new message arriving.
On some desktops, notifications can also have clickable buttons.

Use notifications carefully,
because they can easily distract a user who’s trying to focus.
The desktop may have controls to disable all notifications from an application,
but you could also offer the user more fine-grained controls.

Wrapper libraries like libnotify make it easy to send notifications with a
couple of lines of code. If you need to dig deeper, look at the specification
linked below.

See also

Desktop notifications in Arch Linux wiki [https://wiki.archlinux.org/index.php/Desktop_notifications]
(with examples in many programming languages)

Desktop notifications specification [https://developer.gnome.org/notification-spec/]

Storing data

When the user deliberately saves or exports a file, they’ll normally select
where it should go. Data that you want to store ‘invisibly’ is divided into a
few categories:

	Cache: Data that can be regenerated or redownloaded if necessary

	Configuration

	Runtime: Transient objects your application uses while it’s running

	Application data: Everything else

See also

XDG base directory specification [https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html]

Cache

Cached data is stored in a single folder, controlled by an environment variable.
It’s a good idea to make a subdirectory for your application.

	
XDG_CACHE_HOME

	A path to a directory where cache data should be stored.
If empty or unset, the default is ~/.cache.

Configuration & application data

Both configuration and application data have an ordered list of directories to
look in. If you’re storing data at runtime, you should write to the appropriate
‘home’ location, which is also the highest priority location to look for files.
The other locations allow config/data files to be installed systemwide.

If your application will need more than a single file in either of these
categories,
it’s a good idea to use a subdirectory to group together the files it uses.

	
XDG_CONFIG_HOME

	A path to a directory where config data should be stored.
If empty or unset, the default is ~/.config.

	
XDG_CONFIG_DIRS

	A colon-separated list of directories to look for config files,
in addition to XDG_CONFIG_HOME.
If empty or unset, the default is /etc/xdg.

	
XDG_DATA_HOME

	A path to a directory where application data should be stored.
If empty or unset, the default is ~/.local/share.

	
XDG_DATA_DIRS

	A colon-separated list of directories to look for application data files,
in addition to XDG_DATA_HOME.
If empty or unset, the default is /usr/local/share/:/usr/share/.

Runtime data

Runtime data is stored in a single directory. This is meant for communication
and synchronisation between different components of your application. It has
some special guarantees and limitations:

	The directory must support special filesystem objects like named pipes
and unix sockets.

	Each user has their own runtime directory, and it is only accessible to them.

	Runtime data is not shared between computers, whereas your home directory
may be shared using something like NFS.

	The directory is deleted when the user logs out, and files not modified in
six hours may be removed even while logged in
(set the sticky bit to prevent that).

	It may be kept purely in memory, so don’t try to store lots of data here.

	
XDG_RUNTIME_DIR

	The path of a directory to store runtime data.
There is no default; if it’s not set, the desktop has not set up a runtime
directory.

Index

 D
 | E
 | P

D

 	
 	desktop entry

E

 	
 	
 environment variable

 	PATH

 	XDG_CACHE_HOME

 	XDG_CONFIG_DIRS

 	XDG_CONFIG_HOME

 	XDG_DATA_DIRS

 	XDG_DATA_HOME

 	XDG_RUNTIME_DIR

P

 	
 	PATH

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/notification-example.png
Sat 1:56 PM

© Time is up!

Timer countdown finished

_static/plus.png

_images/notification-example.png
Sat 1:56 PM

© Time is up!

Timer countdown finished

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Penguin Carpentry: Integrating apps on desktop Linux

 		
 User Interface options

 		
 Desktop style: GTK or Qt

 		
 Web tech: Electron or browser

 		
 Game style

 		
 Launching your application

 		
 Command line

 		
 Desktop launcher

 		
 File associations

 		
 Define a MIME type

 		
 Icons

 		
 Icon file formats

 		
 File locations

 		
 Notifications

 		
 Storing data

 		
 Cache

 		
 Configuration & application data

 		
 Runtime data

_static/up-pressed.png

_static/up.png

